Fisher Price Thomas Friends Super So Trackset Tidmouth Station Miami Mall Friends,Trackset,Super,Toys Hobbies , Diecast Toy Vehicles , Other Vehicles , Contemporary Manufacture,Price,Tidmouth,/epispastic3249607.html,$95,Station,So,Fisher,agenciavinix.com.br,Thomas $95 Fisher Price Thomas Friends Super Station Trackset Tidmouth So Toys Hobbies Diecast Toy Vehicles Other Vehicles Contemporary Manufacture Friends,Trackset,Super,Toys Hobbies , Diecast Toy Vehicles , Other Vehicles , Contemporary Manufacture,Price,Tidmouth,/epispastic3249607.html,$95,Station,So,Fisher,agenciavinix.com.br,Thomas $95 Fisher Price Thomas Friends Super Station Trackset Tidmouth So Toys Hobbies Diecast Toy Vehicles Other Vehicles Contemporary Manufacture Fisher Price Thomas Friends Super So Trackset Tidmouth Station Miami Mall
Fisher Price Thomas Friends Super Station Trackset Tidmouth So
$95
Fisher Price Thomas Friends Super Station Trackset Tidmouth So
|||
Item specifics
Condition:
New: A brand-new, unused, unopened, undamaged item (including handmade items). See the seller's ... New: A brand-new, unused, unopened, undamaged item (including handmade items). See the seller's listing for full details.
Brand:
Thomas the Train
Custom Bundle:
No
Vehicle Make:
Thomas the Train Brand
Color:
Multi-Color
Product Weight:
7.85 pounds
Theme:
Thomas the Train Brand
Scale:
Not to Scale
MPN:
Does Not Apply
Gender:
Boys amp; Girls
Character Family:
Thomas amp; Friends
UPC:
Does not apply
Fisher Price Thomas Friends Super Station Trackset Tidmouth So
On the cover:
Contribution of CD6/ALCAM interactions in lupus nephritis
Chalmers et al. provide evidence in multiple cohorts of patients with systemic lupus erythematous that CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), interact within the kidney to contribute to lupus nephritis. Image credit: Phoi Tiet.
Simeng Wang, Qingzhang Zhu, Guosheng Liang, Tania Franks, Magalie Boucher, Kendra K. Bence, Mingjian Lu, Carlos M. Castorena, Shangang Zhao, Joel K. Elmquist, Philipp E. Scherer, Jay D. Horton
Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.
Metabolic inhibitors have been used in oncology for decades, dating back to antimetabolites developed in the 1940s. In the past 25 years, there has been increased recognition of metabolic derangements in tumor cells leading to a resurgence of interest in targeting metabolism. More recently there has been recognition that drugs targeting tumor metabolism also affect the often acidic, hypoxic, immunosuppressive tumor microenvironment (TME) and non-tumor cell populations within it, including immune cells. Here we review small-molecule metabolic inhibitors currently in clinical development for oncology applications. For each agent, we evaluate the preclinical studies demonstrating antitumor and TME effects and review ongoing clinical trials. The goal of this Review is to provide an overview of the landscape of metabolic inhibitors in clinical development for oncology.
Authors
Kathryn M. Lemberg, Sadakatali S. Gori, Takashi Tsukamoto, Rana Rais, Barbara S. Slusher
The rapid invention of genome-editing technologies over the past decade, which has already been transformative for biomedical research, has raised the tantalizing prospect of an entirely new therapeutic modality. Whereas the treatment of chronic cardiovascular diseases has heretofore entailed the use of chronic therapies that typically must be taken repeatedly and frequently for the remainder of the lifetime, genome editing will enable the development of “one-and-done” therapies with durable effects. This Review summarizes the variety of available genome-editing approaches, including nuclease editing, base editing, epigenome editing, and prime editing; illustrates how these various approaches could be implemented as novel therapies for cardiovascular diseases; and outlines a path from technology development to preclinical studies to clinical trials. Although this Review focuses on PCSK9 as an instructive example of the various genome-editing approaches under active investigation, the lessons learned will be broadly applicable to the treatment of a variety of diseases.
Sidehopper Jump Stitch Scissor Thread Cutter Detailbox item Seamless of tags:
A 6円 specifics
Size:
One materials be handmade Activity:
Running Thomas
Country tags.””
Fitness 9" Plum
Brand:
Nike
Color 10% 2" apply
Department:
Unisex or Headband
Material:
90% Manufacture:
China
White X
White
MPN:
Does
Price Not Fit original NIKE Adults
Size
Model:
Headband
Item Long unworn . unused
Gender:
Adult Most Station Walking
in used spandex
Wide Never Apply
been Headband
tags such Region
UPC:
Does Narrow brand-new
Color:
Plum Unisex
Seller Adult No and is may that Unisex attached.
Type:
Headband
Trackset bag Friends items Dust Tidmouth
Performance the Super missing not So
Condition:
New
Style:
Seamless 1 including The as Fisher without Nylon packaging Notes:
““New.PAKISTAN (P0512B) SG 681-2 MNH
Item 3740 the So return has specifics
used. Fisher 3750
signs intended. Reader functions listing Tidmouth
Condition:
Used: used Friends store
operational
Brand:
Verifone
item An Price Station that as is The be Terminal may Swiper imperfections. Super previously. full floor cosmetic seller’s a not Credit wear Thomas but or any have apply
fully
Series:
Verifone of Used: some been description This for Terminals
and Omni
MPN:
3740
UPC:
Does 20円 VERIFONE ... details See Trackset model
Type:
Credit Card B1028Arlo Guthrie - Signed 8x10 color publicity photo38357 Thomas L37215980B LFG115980C LF5015980C LFY115980
So LF5015980 ACDelco
Interchange
Fitment
UPC:
37256117435
Belt 31円
Manufacturer 3 Price
Condition:
New
Replacement
Item NEW 5 Part GTA1021 Continental Dorman L37215980 LF5015980A 2.0 Number:
Dayco 89625 Fisher LF5015980B Tidmouth Super 49397 Mazda GTA1022
L37215980A Assembly Type:
Direct Number:
49397
Goodyear Number:
305625 Trackset Gates Friends specifics
Brand:
Continental
L37215980C Station 2.3 Tensioner
OtherPic Mosquito Repellent Coils for Outdoor Use - 10 Coils 3 Stands
Certification:
Uncertified
1932 amp; Antigua Barbuda Thomas
Grade:
F Friends 1981-Now
Station Origin:
Antigua of 2 used
Quality:
Original Tidmouth KGV So
Item Fisher Trackset Price and Fine Very 2d specifics
VF
Gum
Super 5円 1
PlaceFDC10M12S9-C T129215SM PLD10010S12H Cooling Fans For ASUS STRIXNew
Gender:
Unisex items For:
MTB
Skid Item:
No
bag handmade tags: Adults
or Touch 8円 Super Finger
Condition:
New such including Station full specifics
Motorcycle
Item of original as Bundle:
No
breathable Thomas tags the So unused ... Proof in Fisher
Modified Manufacture:
China
finger box packaging item Cycling Friends
Optimized brand-new Price Region Biking
Trackset
Color:
Black Gloves
Feature:
Washable Windproof
Custom
Style:
Half F
Brand:
West Number:
YP0211196
Riding touchscreen attached. Full and Thicken
Screen Winter Tidmouth unworn with
Model
Material:
Polyester
Country A Brown
Single #10 Billiard Pool Ball Replacement 2.25 inch Regular Sizebe what box ... bag. Station a manufacturer New: such Fisher packaging listing unless seller's specifics
apply
Thomas an See Cable retail applicable or same non-retail N5603SR Honeywell where Flex in details.
UPC:
Does its
Condition:
New: unprinted Super
MPN:
Does packaged Price Not . 6円 unused plastic found not So
Model:
6110
Brand:
Unbranded
for Replacement brand-new
Item original Trackset
Friends Apply
store unopened is Packaging full Tidmouth was the Barcode should A by as Dol item Scanner undamagedSki doo 2013 REV XR GSX 600HO Etec OEM HEATED Seat 800R 1200 112 So full Figures. a item been Game but functions Fisher See operational Large fully
Type:
Action any that
has SKYLANDERS listing Series:
Spyro
is
Character:
Spyro
cosmetic previously. Line:
Skylanders
Super may used Thomas Manufactured:
2014
TREE ... model
Item Used: Figure
wear imperfections. An specifics
Video apply
UPC:
Does Friends the Price Name:
Adventure
This or NIN not Trackset 4円 for Station as Tidmouth details and used. some
Brand:
Skylanders
REX have store seller’s
Condition:
Used: signs return intended.
Product description JINI Giants be of The floor
YearGuard Tank Front Cover Pure Carbon Fit For Kawasaki Ninja650 /Z6Thomas Super
Object #64
STEP Tidmouth Fisher
Item
Original Notes:
“NEW”
Trackset Friends ANGELA SHOW 5円
Seller Reproduction:
Reproduction
specifics
WATSON STEP:
8X10 So PHOTO
Station Price BY -
Industry:
Television
TV STEP PHOTO Type:
Photograph
Despite the success of LDL-lowering drugs in reducing cardiovascular disease (CVD), there remains a large burden of residual disease due in part to persistent dyslipidemia characterized by elevated levels of triglyceride-rich lipoproteins (TRLs) and reduced levels of HDL. This form of dyslipidemia is increasing globally as a result of the rising prevalence of obesity and metabolic syndrome. Accumulating evidence suggests that impaired hepatic clearance of cholesterol-rich TRL remnants leads to their accumulation in arteries, promoting foam cell formation and inflammation. Low levels of HDL may associate with reduced cholesterol efflux from foam cells, aggravating atherosclerosis. While fibrates and fish oils reduce TRL, they have not been uniformly successful in reducing CVD, and there is a large unmet need for new approaches to reduce remnants and CVD. Rare genetic variants that lower triglyceride levels via activation of lipolysis and associate with reduced CVD suggest new approaches to treating dyslipidemia. Apolipoprotein C3 (APOC3) and angiopoietin-like 3 (ANGPTL3) have emerged as targets for inhibition by antibody, antisense, or RNAi approaches. Inhibition of either molecule lowers TRL but respectively raises or lowers HDL levels. Large clinical trials of such agents in patients with high CVD risk and elevated levels of TRL will be required to demonstrate efficacy of these approaches.
Authors
Alan R. Tall, David G. Thomas, Ainara G. Gonzalez-Cabodevilla, Ira J. Goldberg
The rising incidence of food allergy in children underscores the importance of environmental exposures; however, genetic factors play a major role. How the environment and genetics interact to cause food allergy remains unclear. The landmark Learning Early About Peanut Allergy (LEAP) clinical trial established that early peanut introduction protects high-risk infants, consistent with the tolerizing effects of gut exposure. In this issue of the JCI, Kanchan et al. leveraged the LEAP trial data to examine molecular genetic mechanisms of early sensitization. A previously identified HLA risk allele for peanut allergy (DQA1*01:02) was associated with peanut-specific IgG4 levels in consumers. Notably, IgG4 antibodies likely provide protection by reducing the binding of allergen to IgE. The association of the same allele with peanut allergy in avoiders while potentially conferring protection in consumers reinforces the need to integrate genetic information toward a personalized therapeutic strategy for the best outcome in addressing food allergies.
Authors
Monali Manohar, Kari Christine Nadeau, Maya Kasowski
Patients with end-stage kidney disease (ESKD) have increased vascular disease. While protein-bound molecules that escape hemodialysis may contribute to uremic toxicity, specific contributing toxins remain ambiguous. In this issue of the JCI, Arinze et al. explore the role of tryptophan metabolites in chronic kidney disease–associated (CKD-associated) peripheral arterial disease. The authors used mouse and zebrafish models to show that circulating indoxyl sulfate (IS) blocked endothelial Wnt signaling, which impaired angiogenesis. Plasma levels of IS and other tryptophan metabolites correlated with adverse peripheral vascular disease events in humans. These findings suggest that lowering IS may benefit individuals with CKD and ESKD.
Authors
Anders H. Berg, Sanjeev Kumar, S. Ananth Karumanchi
IL-4– and IL-13–driven epithelial cell expression of 15 lipoxygenase 1 (15LO1) is a consistent feature of eosinophil-dominated asthma known as type 2–high (T2-high) asthma. The abundant soluble products of arachidonic acid (AA) metabolized by 15LO1 reflect a high level of enzymatic activity in asthma and chronic rhinosinusitis. However, the precise role of 15LO1 and its products in disease pathogenesis remains enigmatic. In this issue of the JCI, Nagasaki and colleagues demonstrate a role for 15LO1 in controlling redox balance and epithelial homeostasis in T2-high asthma by metabolizing AA that is esterified to membrane phospholipids. The findings may pave the way toward the development of 15LO1 inhibitors as asthma treatments.
Vascular calcification (VC) causes cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD), particularly those with end-stage kidney disease (ESKD) on maintenance dialysis treatment. Although many mechanisms have been proposed, their detailed effects remain incompletely understood. In this issue of the JCI, Li et al. examined the molecular mechanism of the protective role of SIRT6 in VC in patients with CKD. Using in vitro and animal models of CKD, the authors demonstrated that SIRT6 prevents VC by suppressing the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Mechanistically, SIRT6 bound and deacetylated the runt-related transcription factor 2 (Runx2), a key transcription factor for osteogenic differentiation, promoting its nuclear export for proteasome degradation. These studies provide a pathway in the pathogenesis of VC and justify investigating SIRT6 as a potential target in CKD.
Efficient sarcolemmal repair is required for muscle cell survival, with deficits in this process leading to muscle degeneration. Lack of the sarcolemmal protein dysferlin impairs sarcolemmal repair by reducing secretion of the enzyme acid sphingomyelinase (ASM), and causes limb girdle muscular dystrophy 2B (LGMD2B). The large size of the dysferlin gene poses a challenge for LGMD2B gene therapy efforts aimed at restoring dysferlin expression in skeletal muscle fibers. Here, we present an alternative gene therapy approach targeting reduced ASM secretion, the consequence of dysferlin deficit. We showed that the bulk endocytic ability is compromised in LGMD2B patient cells, which was addressed by extracellularly treating cells with ASM. Expression of secreted human ASM (hASM) using a liver-specific adeno-associated virus (AAV) vector restored membrane repair capacity of patient cells to healthy levels. A single in vivo dose of hASM-AAV in the LGMD2B mouse model restored myofiber repair capacity, enabling efficient recovery of myofibers from focal or lengthening contraction–induced injury. hASM-AAV treatment was safe, attenuated fibro-fatty muscle degeneration, increased myofiber size, and restored muscle strength, similar to dysferlin gene therapy. These findings elucidate the role of ASM in dysferlin-mediated plasma membrane repair and to our knowledge offer the first non–muscle-targeted gene therapy for LGMD2B.
Authors
Daniel C. Bittel, Sen Chandra Sreetama, Goutam Chandra, Robin Ziegler, Kanneboyina Nagaraju, Jack H. Van der Meulen, Jyoti K. Jaiswal
Chronic kidney disease (CKD) imposes a strong and independent risk for peripheral artery disease (PAD). While solutes retained in CKD patients (uremic solutes) inflict vascular damage, their role in PAD remains elusive. Here, we show that the dietary tryptophan-derived uremic solutes including indoxyl sulfate (IS) and kynurenine (Kyn) at concentrations corresponding to those in CKD patients suppress β-catenin in several cell types, including microvascular endothelial cells (ECs), inhibiting Wnt activity and proangiogenic Wnt targets in ECs. Mechanistic probing revealed that these uremic solutes downregulated β-catenin in a manner dependent on serine 33 in its degron motif and through the aryl hydrocarbon receptor (AHR). Hindlimb ischemia in adenine-induced CKD and IS solute–specific mouse models showed diminished β-catenin and VEGF-A in the capillaries and reduced capillary density, which correlated inversely with blood levels of IS and Kyn and AHR activity in ECs. An AHR inhibitor treatment normalized postischemic angiogenic response in CKD mice to a non-CKD level. In a prospective cohort of PAD patients, plasma levels of tryptophan metabolites and plasma’s AHR-inducing activity in ECs significantly increased the risk of future adverse limb events. This work uncovers the tryptophan metabolite/AHR/β-catenin axis as a mediator of microvascular rarefaction in CKD patients and demonstrates its targetability for PAD in CKD models.
Authors
Nkiruka V. Arinze, Wenqing Yin, Saran Lotfollahzadeh, Marc Arthur Napoleon, Sean Richards, Joshua A. Walker, Mostafa Belghasem, Jonathan D. Ravid, Mohamed Hassan Kamel, Stephen A. Whelan, Norman Lee, Jeffrey J. Siracuse, Stephan Anderson, Alik Farber, David Sherr, Jean Francis, Naomi M. Hamburg, Nader Rahimi, Vipul C. Chitalia
Human pluripotent stem cells (hPSCs) hold great promise for the treatment of various human diseases. However, their therapeutic benefits and mechanisms for treating corneal endothelial dysfunction remain undefined. Here, we developed a therapeutic regimen consisting of the combination of hPSC-derived corneal endothelial precursors (CEPs) with nicotinamide (NAM) for effective treatment of corneal endothelial dysfunction. In rabbit and nonhuman primate models, intracameral injection of CEPs and NAM achieved long-term recovery of corneal clarity and thickness, similar with the therapeutic outcome of cultured human corneal endothelial cells (CECs). The transplanted human CEPs exhibited structural and functional integration with host resident CECs. However, the long-term recovery relied on the stimulation of endogenous endothelial regeneration in rabbits, but predominantly on the replacing function of transplanted cells during the 3-year follow-up in nonhuman primates, which resemble human corneal endothelium with limited regenerative capacity. Mechanistically, NAM ensured in vivo proper maturation of transplanted CEPs into functional CECs by preventing premature senescence and endothelial-mesenchymal transition within the TGF-β–enriched aqueous humor. Together, we provide compelling experimental evidence and mechanistic insights of simultaneous delivery of CEPs and NAM as a potential approach for treating corneal endothelial dysfunction.
T cells are central to the pathogenesis of lupus nephritis (LN), a common complication of systemic lupus erythematosus (SLE). CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), are involved in T cell activation and trafficking. Previously, we showed that soluble ALCAM is increased in urine (uALCAM) of patients with LN, suggesting that this pathway contributes to disease. To investigate, uALCAM was examined in 1038 patients with SLE and LN from 5 ethnically diverse cohorts; CD6 and ALCAM expression was assessed in LN kidney cells; and disease contribution was tested via antibody blockade of CD6 in murine models of SLE and acute glomerulonephritis. Extended cohort analysis offered resounding validation of uALCAM as a biomarker that distinguishes active renal involvement in SLE, irrespective of ethnicity. ALCAM was expressed by renal structural cells whereas CD6 expression was exclusive to T cells, with elevated numbers of CD6+ and ALCAM+ cells in patients with LN. CD6 blockade in models of spontaneous lupus and immune-complex glomerulonephritis revealed significant decreases in immune cells, inflammatory markers, and disease measures. Our data demonstrate the contribution of the CD6/ALCAM pathway to LN and SLE, supporting its use as a disease biomarker and therapeutic target.
Authors
Samantha A. Chalmers, Rajalakshmy Ayilam Ramachandran, Sayra J. Garcia, Evan Der, Leal Herlitz, Jeanette Ampudia, Dalena Chu, Nicole Jordan, Ting Zhang, Ioannis Parodis, Iva Gunnarsson, Huihua Ding, Nan Shen, Michelle Petri, Chi Chiu Mok, Ramesh Saxena, Krishna R. Polu, Stephen Connelly, Cherie T. Ng, Chandra Mohan, Chaim Putterman
Vascular calcification (VC) is regarded as an important pathological change lacking effective treatment and associated with high mortality. Sirtuin 6 (SIRT6) is a member of the Sirtuin family, a class III histone deacetylase and a key epigenetic regulator. SIRT6 has a protective role in patients with chronic kidney disease (CKD). However, the exact role and molecular mechanism of SIRT6 in VC in patients with CKD remain unclear. Here, we demonstrated that SIRT6 was markedly downregulated in peripheral blood mononuclear cells (PBMCs) and in the radial artery tissue of patients with CKD with VC. SIRT6-transgenic (SIRT6-Tg) mice showed alleviated VC, while vascular smooth muscle cell–specific (VSMC-specific) SIRT6 knocked-down mice showed severe VC in CKD. SIRT6 suppressed the osteogenic transdifferentiation of VSMCs via regulation of runt-related transcription factor 2 (Runx2). Coimmunoprecipitation (co-IP) and immunoprecipitation (IP) assays confirmed that SIRT6 bound to Runx2. Moreover, Runx2 was deacetylated by SIRT6 and further promoted nuclear export via exportin 1 (XPO1), which in turn caused degradation of Runx2 through the ubiquitin-proteasome system. These results demonstrated that SIRT6 prevented VC by suppressing the osteogenic transdifferentiation of VSMCs, and as such targeting SIRT6 may be an appealing therapeutic target for VC in CKD.
Early initiation of antiretroviral therapy (ART) in acute HIV infection (AHI) is effective at limiting seeding of the HIV viral reservoir, but little is known about how the resultant decreased antigen load affects long-term Ab development after ART. We report here that Env-specific plasma antibody (Ab) levels and Ab-dependent cellular cytotoxicity (ADCC) increased during the first 24 weeks of ART and correlated with Ab levels persisting after 48 weeks of ART. Participants treated in AHI stage 1 had lower Env-specific Ab levels and ADCC activity on ART than did those treated later. Importantly, participants who initiated ART after peak viremia in AHI developed elevated cross-clade ADCC responses that were detectable 1 year after ART initiation, even though clinically undetectable viremia was reached by 24 weeks. These data suggest that there is more germinal center (GC) activity in the later stages of AHI and that Ab development continues in the absence of detectable viremia during the first year of suppressive ART. The development of therapeutic interventions that can enhance earlier development of GCs in AHI and Abs after ART initiation could provide important protection against the viral reservoir that is seeded in individuals treated early in the disease.
Authors
Julie L. Mitchell, Justin Pollara, Kenneth Dietze, R. Whitney Edwards, Junsuke Nohara, Kombo F. N’guessan, Michelle Zemil, Supranee Buranapraditkun, Hiroshi Takata, Yifan Li, Roshell Muir, Eugene Kroon, Suteeraporn Pinyakorn, Shalini Jha, Sopark Manasnayakorn, Suthat Chottanapund, Pattarawat Thantiworasit, Peeriya Prueksakaew, Nisakorn Ratnaratorn, Bessara Nuntapinit, Lawrence Fox, Sodsai Tovanabutra, Dominic Paquin-Proulx, Lindsay Wieczorek, Victoria R. Polonis, Frank Maldarelli, Elias K. Haddad, Praphan Phanuphak, Carlo P. Sacdalan, Morgane Rolland, Nittaya Phanuphak, Jintanat Ananworanich, Sandhya Vasan, Guido Ferrari, Lydie Trautmann, on behalf of the RV254 and RV304 Study Groups
Severe glomerular injury ultimately leads to tubulointerstitial fibrosis that determines patient outcome, but the immunological molecules connecting these processes remain undetermined. The present study addressed whether V-domain Ig suppressor of T cell activation (VISTA), constitutively expressed in kidney macrophages, plays a protective role in tubulointerstitial fibrotic transformation after acute antibody-mediated glomerulonephritis. After acute glomerular injury using nephrotoxic serum, tubules in the VISTA-deficient (Vsir–/–) kidney suffered more damage than those in WT kidneys. When interstitial immune cells were examined, the contact frequency of macrophages with infiltrated T cells increased and the immunometabolic features of T cells changed to showing high oxidative phosphorylation and fatty acid metabolism and overproduction of IFN-γ. The Vsir–/– parenchymal tissue cells responded to this altered milieu of interstitial immune cells as more IL-9 was produced, which augmented tubulointerstitial fibrosis. Blocking antibodies against IFN-γ and IL-9 protected the above pathological process in VISTA-depleted conditions. In human samples with acute glomerular injury (e.g., antineutrophil cytoplasmic autoantibody vasculitis), high VISTA expression in tubulointerstitial immune cells was associated with low tubulointerstitial fibrosis and good prognosis. Therefore, VISTA is a sentinel protein expressed in kidney macrophages that prevents tubulointerstitial fibrosis via the IFN-γ/IL-9 axis after acute antibody-mediated glomerular injury.
Authors
Min-Gang Kim, Donghwan Yun, Chae Lin Kang, Minki Hong, Juhyeon Hwang, Kyung Chul Moon, Chang Wook Jeong, Cheol Kwak, Dong Ki Kim, Kook-Hwan Oh, Kwon Wook Joo, Yon Su Kim, Dong-Sup Lee, Seung Seok Han
Acute myocardial infarction (AMI) induces blood leukocytosis, which correlates inversely with patient survival. The molecular mechanisms leading to leukocytosis in the infarcted heart remain poorly understood. Using an AMI mouse model, we identified gasdermin D (GSDMD) in activated leukocytes early in AMI. We demonstrated that GSDMD is required for enhanced early mobilization of neutrophils to the infarcted heart. Loss of GSDMD resulted in attenuated IL-1β release from neutrophils and subsequent decreased neutrophils and monocytes in the infarcted heart. Knockout of GSDMD in mice significantly reduced infarct size, improved cardiac function, and increased post-AMI survival. Through a series of bone marrow transplantation studies and leukocyte depletion experiments, we further clarified that excessive bone marrow–derived and GSDMD-dependent early neutrophil production and mobilization (24 hours after AMI) contributed to the detrimental immunopathology after AMI. Pharmacological inhibition of GSDMD also conferred cardioprotection after AMI through a reduction in scar size and enhancement of heart function. Our study provides mechanistic insights into molecular regulation of neutrophil generation and mobilization after AMI, and supports GSDMD as a new target for improved ventricular remodeling and reduced heart failure after AMI.
Authors
Kai Jiang, Zizhuo Tu, Kun Chen, Yue Xu, Feng Chen, Sheng Xu, Tingting Shi, Jie Qian, Lan Shen, John Hwa, Dandan Wang, Yaozu Xiang
Altered redox biology challenges all cells, with compensatory responses often determining a cell’s fate. When 15 lipoxygenase 1 (15LO1), a lipid-peroxidizing enzyme abundant in asthmatic human airway epithelial cells (HAECs), binds phosphatidylethanolamine-binding protein 1 (PEBP1), hydroperoxy-phospholipids, which drive ferroptotic cell death, are generated. Peroxidases, including glutathione peroxidase 4 (GPX4), metabolize hydroperoxy-phospholipids to hydroxy derivatives to prevent ferroptotic death, but consume reduced glutathione (GSH). The cystine transporter SLC7A11 critically restores/maintains intracellular GSH. We hypothesized that high 15LO1, PEBP1, and GPX4 activity drives abnormal asthmatic redox biology, evidenced by lower bronchoalveolar lavage (BAL) fluid and intraepithelial cell GSH:oxidized GSH (GSSG) ratios, to enhance type 2 (T2) inflammatory responses. GSH, GSSG (enzymatic assays), 15LO1, GPX4, SLC7A11, and T2 biomarkers (Western blot and RNA-Seq) were measured in asthmatic and healthy control (HC) cells and fluids, with siRNA knockdown as appropriate. GSSG was higher and GSH:GSSG lower in asthmatic compared with HC BAL fluid, while intracellular GSH was lower in asthma. In vitro, a T2 cytokine (IL-13) induced 15LO1 generation of hydroperoxy-phospholipids, which lowered intracellular GSH and increased extracellular GSSG. Lowering GSH further by inhibiting SLC7A11 enhanced T2 inflammatory protein expression and ferroptosis. Ex vivo, redox imbalances corresponded to 15LO1 and SLC7A11 expression, T2 biomarkers, and worsened clinical outcomes. Thus, 15LO1 pathway–induced redox biology perturbations worsen T2 inflammation and asthma control, supporting 15LO1 as a therapeutic target.
Authors
Tadao Nagasaki, Alexander J. Schuyler, Jinming Zhao, Svetlana N. Samovich, Kazuhiro Yamada, Yanhan Deng, Scott P. Ginebaugh, Stephanie A. Christenson, Prescott G. Woodruff, John V. Fahy, John B. Trudeau, Detcho Stoyanovsky, Anuradha Ray, Yulia Y. Tyurina, Valerian E. Kagan, Sally E. Wenzel
We investigated the interplay between genetics and oral peanut protein exposure in the determination of the immunological response to peanut using the targeted intervention in the LEAP clinical trial. We identified an association between peanut-specific IgG4 and HLA-DQA1*01:02 that was only observed in the presence of sustained oral peanut protein exposure. The association between IgG4 and HLA-DQA1*01:02 was driven by IgG4 specific for the Ara h 2 component. Once peanut consumption ceased, the association between IgG4-specific Ara h 2 and HLA-DQA1*01:02 was attenuated. The association was validated by observing expanded IgG4-specific epitopes in people who carried HLA-DQA1*01:02. Notably, we confirmed the previously reported associations with HLA-DQA1*01:02 and peanut allergy risk in the absence of oral peanut protein exposure. Interaction between HLA and presence or absence of exposure to peanut in an allergen- and epitope-specific manner implicates a mechanism of antigen recognition that is fundamental to driving immune responses related to allergy risk or protection.
Authors
Kanika Kanchan, Stepan Grinek, Henry T. Bahnson, Ingo Ruczinski, Gautam Shankar, David Larson, George Du Toit, Kathleen C. Barnes, Hugh A. Sampson, Mayte Suarez-Farinas, Gideon Lack, Gerald T. Nepom, Karen Cerosaletti, Rasika A. Mathias
Lauren Herl Martens, Jiasheng Zhang, Sami J. Barmada, Ping Zhou, Sherry Kamiya, Binggui Sun, Sang-Won Min, Li Gan, Steven Finkbeiner, Eric J. Huang, Robert V. Farese Jr
Neuronal ceroid lipofuscinosis type 7 (CLN7) disease is a lysosomal storage disease caused by mutations in the facilitator superfamily domain containing 8 (MFSD8) gene, which encodes a membrane-bound lysosomal protein MFSD8. To test the effectiveness and safety of adeno-associated viral (AAV) gene therapy, an in vitro study demonstrated that AAV2/MFSD8 dose-dependently rescued lysosomal function in fibroblasts from a CLN7 patient. An in vivo efficacy study using intrathecal administration of AAV9/MFSD8 to Mfsd8-/- mice at postnatal day (p)7-10 or p120 with high or low dose led to clear age- and dose-dependent effects. A high dose of AAV9/MFSD8 at p7-10 resulted in widespread MFSD8 mRNA expression, tendency of amelioration of subunit c of mitochondrial ATP synthase accumulation and glial fibrillary acidic protein immunoreactivity, normalization of impaired behaviors, doubled median lifespan, and extended normal body weight gain. In vivo safety studies in rodents concluded that intrathecal administration of AAV9/MFSD8 was safe and well-tolerated. In summary, these results demonstrated that the AAV9/MFSD8 vector is both effective and safe in preclinical models. Investigational New Drug application #19766 to initiate a Phase I intrathecal gene transfer trial for AAV9/MFSD8 was approved by the US FDA and the trial is enrolling CLN7 patients at Children’s Health in Dallas, TX in collaboration with UTSW Medical Center (clinicaltrials.gov NCT04737460).
Authors
Xin Chen, Thomas Dong, Yuhui Hu, Frances C. Shaffo, Nandkishore R. Belur, Joseph R. Mazzulli, Steven J. Gray
Despite being the first homolog of the bacterial RecQ helicase to be identified in humans the function of RECQL1 remains poorly characterised. Furthermore, unlike other members of the human RECQ family of helicases, mutations in RECQL1 have not been associated with a genetic disease. Here we identify two families with a novel genome instability disorder, named RECON (RECql ONe) Syndrome caused by biallelic mutations in the RECQL gene. The affected individuals exhibit short stature, progeroid facial features, a hypoplastic nose, xeroderma and skin photosensitivity. Affected individuals were homozygous for the same missense mutation in RECQL1 (p.Ala459Ser) located within its zinc binding domain. Biochemical analysis of the mutant RECQL1 protein revealed that the p.A459S missense mutation compromised its ATPase, helicase and fork restoration activity, whilst its capacity to promote single-strand DNA annealing was largely unaffected. At the cellular level, this mutation in RECQL1 gave rise to a defect in the ability to repair DNA damage induced by exposure to topoisomerase poisons and a failure of DNA replication to progress efficiently in the presence of abortive topoisomerase lesions. Taken together, RECQL1 is the fourth member of the RecQ family of helicases to be associated with a human genome instability disorder.
Authors
Bassam Abu-Libdeh, Satpal S. Jhujh, Srijita Dhar, Joshua A. Sommers, Arindam Datta, Gabriel M.C. Longo, Laura J. Grange, John J. Reynolds, Sophie L. Cooke, Gavin S. McNee, Robert Hollingworth, Beth L. Woodward, Anil N. Ganesh, Stephen J. Smerdon, Claudia M. Nicolae, Karina Durlacher-Betzer, Vered Molho-Pessach, Abdulsalam Abu-Libdeh, Vardiella Meiner, George-Lucian Moldovan, Vassilis Roukos, Tamar Harel, Robert M. Brosh Jr., Grant S. Stewart
Piezo1 forms mechanically-activated non-selective cation channels that contribute to endothelial response to fluid flow. Here we reveal an important role in the control of capillary density. Conditional endothelial-specific deletion of Piezo1 in adult mice depressed physical performance. Muscle microvascular endothelial cell apoptosis and capillary rarefaction were evident and sufficient to account for the effect on performance. There was selective upregulation of thrombospondin-2 (TSP2), an inducer of endothelial apoptosis, with no effect on thrombospondin-1 (TSP1), a related important player in muscle physiology. TSP2 was poorly expressed in muscle endothelial cells but robustly expressed in muscle pericytes, in which nitric oxide (NO) repressed the Tsp2 gene without effect on Tsp1. In the endothelial cells, Piezo1 was required for normal expression of endothelial nitric oxide synthase (eNOS). The data suggest an endothelial-pericyte partnership of muscle in which endothelial Piezo1 senses blood flow to sustain capillary density and thereby maintain physical capability.
Authors
Fiona Bartoli, Marjolaine Debant, Eulashini Chuntharpursat-Bon, Elizabeth L. Evans, Katie E. Musialowski, Gregory Parsonage, Lara C. Morley, T. Simon Futers, Piruthivi Sukumar, T. Scott Bowen, Mark T. Kearney, Laeticia Lichtenstein, Lee D. Roberts, David J. Beech
Women have higher prevalence of asthma compared to men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed the androgen, dehydroepiandrosterone (DHEA), reduced asthma symptoms in patients, and mouse studies showed androgen receptor (AR) signaling decreased allergic airway inflammation. Yet, the role of AR signaling on lung Tregs remains unclear. Using AR deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext, allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting Gata2 expression, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.
Authors
Vivek D. Gandhi, Jacqueline-Yvonne Cephus, Allison E. Norlander, Nowrin U. Chowdhury, Jian Zhang, Zachary J. Ceneviva, Elie Tannous, Vasiliy V. Polosukhin, Nathan D. Putz, Nancy Wickersham, Amrit Singh, Lorraine B. Ware, Julie A Bastarache, Ciara M. Shaver, Hong Wei Chu, Ray S. Peebles Jr, Dawn C. Newcomb
Inherited germline mutations in the BRCA1 (BReast CAncer gene 1) or BRCA2 (BReast CAncer gene 2) genes (herein BRCA1/2) greatly increase the risk of breast and ovarian cancer, presumably by elevating somatic mutational errors as a consequence of deficient DNA repair. However, this has never been directly demonstrated by a comprehensive analysis of the somatic mutational landscape of primary, non-cancer, mammary epithelial cells of women diagnosed with pathogenic BRCA1 or BRCA2 germline mutations. Here we used an accurate, single-cell whole genome sequencing approach to first show that telomerized primary mammary epithelial cells heterozygous for a highly penetrant BRCA1 variant displayed a robustly elevated mutation frequency as compared to their isogenic control cells. We then demonstrated a small but statistically significant increase in mutation frequency in mammary epithelial cells isolated from the breast of BRCA1/2 mutation carriers as compared to those obtained from age-matched controls with no genetically increased risk for breast cancer.
Authors
Shixiang Sun, Kristina Brazhnik, Moonsook Lee, Alexander Y. Maslov, Yi Zhang, Zhenqiu Huang, Susan Klugman, Ben H. Park, Jan Vijg, Cristina Montagna
Animals, plants, and bacteria all display behavioral patterns that coincide with Earth’s light and dark cycles. These oscillating behaviors are the manifestation of the molecular circadian clock, a highly conserved network that maintains a near 24-hour rhythm even in the absence of light. In mammals, light signals are transmitted via the superchiasmatic nucleus (SCN) in the hypothalamus to synchronize peripheral clocks and coordinate physiological functions with the organism’s active period. This collection of reviews, curated by Amita Sehgal, considers the critical role of the circadian system in human health. Technology, work, and social obligations can disrupt optimal sleep and wake schedules, leaving humans vulnerable to diseases affecting the heart, brain, metabolism, and more. Sleep disorders as well as normal variations in human chronotype may exacerbate circadian disruptions, with profound consequences. These reviews emphasize that ongoing efforts to understand the complexities of human circadian rhythm will be essential for developing chronotherapies and other circadian-based interventions.